

Product name	Description	Version
MC-1612	Datasheet of MC-1612 GPS module	1.3

1 Introduction

LOCOSYS GPS MC-1612 module features high sensitivity, low power and ultra small form factor. This GPS module is powered by MediaTek, it can provide you with superior sensitivity and performance even in urban canyon and dense foliage environment.

This module supports hybrid ephemeris prediction to achieve faster cold start. One is self-generated ephemeris prediction that is no need of both network assistance and host CPU's intervention. This is valid for up to 3 days and updates automatically from time to time when GPS module is powered on and satellites are available. The other is server-generated ephemeris prediction that gets from an internet server. This is valid for up to 14 days. Both ephemeris predictions are stored in the on-board flash memory and perform a cold start time less than 15 seconds.

2 Features

- MediaTek high sensitivity solution
- Support 66-channel GPS
- Low power consumption
- Fast TTFF at low signal level
- Built-in 12 multi-tone active interference canceller
- Free hybrid ephemeris prediction to achieve faster cold start
- Built-in data logger
- Up to 10 Hz update rate
- ± 11 ns high accuracy time pulse (1PPS)
- Capable of SBAS (WAAS, EGNOS, MSAS, GAGAN)
- Support Japan QZSS
- Indoor and outdoor multi-path detection and compensation
- Small form factor 16 x 12.2 x 2.2 mm
- SMD type with stamp holes; RoHS compliant
- ISO/TS 16949 quality control

3 Application

- Personal positioning and navigation
- Automotive navigation
- Marine navigation

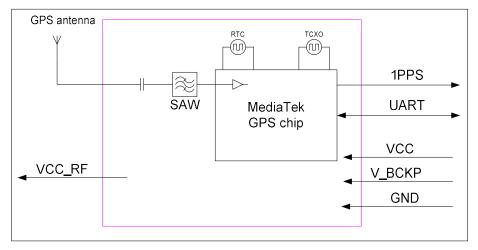


Fig 3-1 System block diagram.

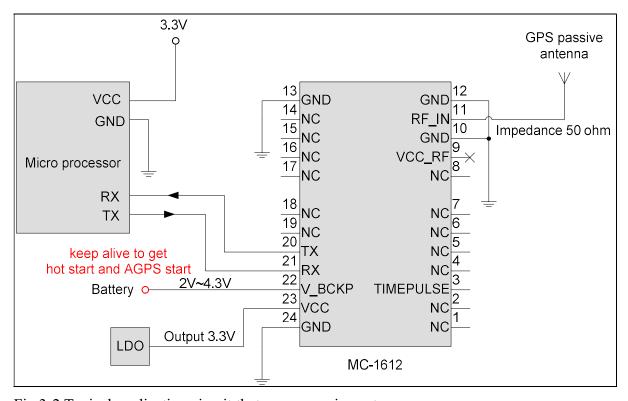


Fig 3-2 Typical application circuit that uses a passive antenna.

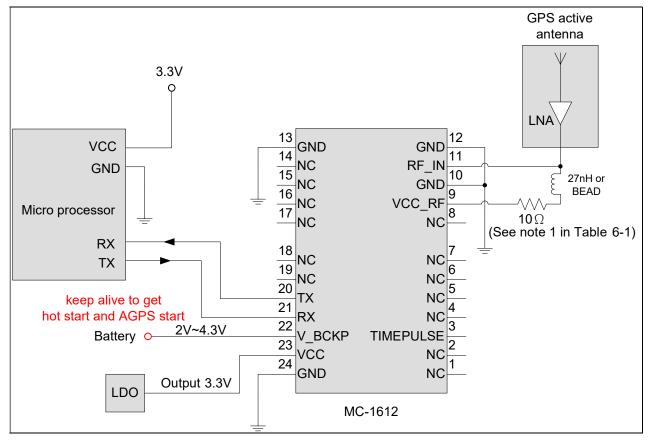


Fig 3-3 Typical application circuit that uses an active antenna.

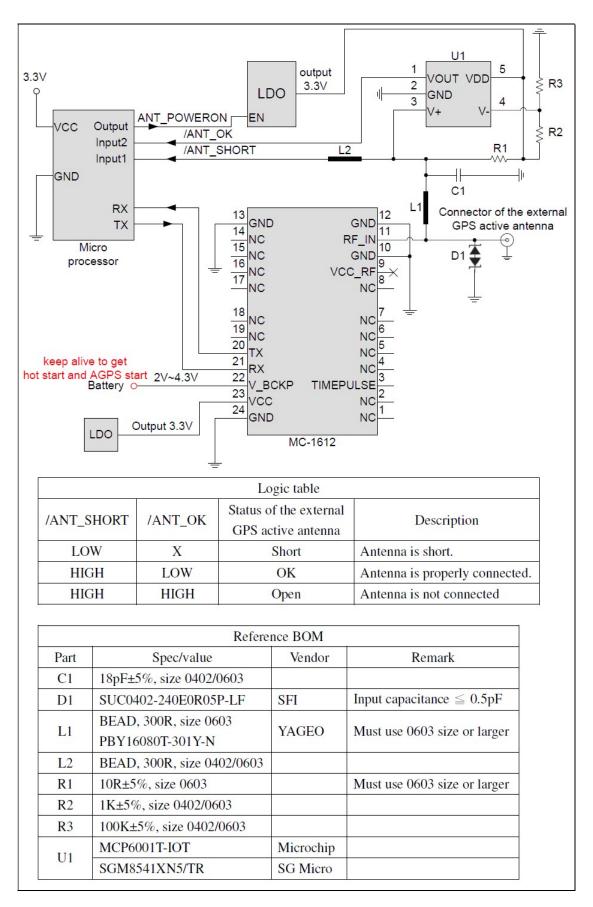


Fig 3-4 Typical application circuit that has supervisor of the external active antenna.

4 GPS receiver

4.1 GPS receiver

Chip	MediaTek MT3339		
Frequency	L1 1575.42MHz, C/A code		
Channels	Support 66 channels (22 Tracking, 66 Acquisition)		
Update rate	1Hz default, up to 10Hz		
C :4::4	Tracking	-162dBm, up to -165dBm (with external LNA)	
Sensitivity	Cold start	-143.5dBm, up to -148dBm (with external LNA)	
	Hot start (Open Sky)	< 1s (typical)	
A	Hot start (Indoor)	< 30s	
Acquisition Time	Cold Start (Open Sky)	32s (typical) without AGPS	
		< 15s (typical) with AGPS (hybrid ephemeris prediction)	
D = -:4: A =	Autonomous	2.5m CEP	
Position Accuracy	SBAS	2.5m (depends on accuracy of correction data).	
V. 1 . '4 . A	Autonomous	<0.1m/s (50%@30m/s)	
Velocity Accuracy	SBAS	<0.05m/s (50%@30m/s)	
Max. Altitude	< 50,000 m		
Max. Velocity	< 515 m/s		
Protocol Support	ND (F. 4. 0.1.0.2 2. 0.1	9600 bps ⁽¹⁾ , 8 data bits, no parity, 1 stop bits (default)	
	NMEA 0183 ver 3.01	1Hz: GGA, GLL, GSA, GSV, RMC, VTG	

Note 1: Both baud rate and output message rate are configurable to be factory default.

5 Software interface

5.1 NMEA output message

Table 5.1-1 NMEA output message

NMEA record	Description		
GGA	Global positioning system fixed data		
GLL	Geographic position - latitude/longitude		
GSA	GNSS DOP and active satellites		
GSV	GNSS satellites in view		
RMC	Recommended minimum specific GNSS data		
VTG	Course over ground and ground speed		

GGA--- Global Positioning System Fixed Data

Table 5.1-2 contains the values for the following example:

\$GPGGA,053740.000,2503.6319,N,12136.0099,E,1,08,1.1,63.8,M,15.2,M,,*64

Table 5.1-2 GGA Data Format

Name	Example	Units	Description
Message ID	\$GPGGA		GGA protocol header
UTC Time	053740.000		hhmmss.sss
Latitude	2503.6319		ddmm.mmmm
N/S indicator	N		N=north or S=south
Longitude	12136.0099		dddmm.mmmm
E/W Indicator	E		E=east or W=west
Position Fix Indicator	1		See Table 5.1-3
Satellites Used	08		Range 0 to 12
HDOP	1.1		Horizontal Dilution of Precision
MSL Altitude	63.8	meters	
Units	M	meters	
Geoid Separation	15.2	meters	
Units	M	meters	
Age of Diff. Corr.		second	Null fields when DGPS is not used
Diff. Ref. Station ID			
Checksum	*64		
<cr> <lf></lf></cr>			End of message termination

Table 5.1-3 Position Fix Indicators

Value	Description
0	Fix not available or invalid
1	GPS SPS Mode, fix valid
2	Differential GPS, SPS Mode, fix valid
3-5	Not supported
6	Dead Reckoning Mode, fix valid

• GLL--- Geographic Position – Latitude/Longitude

Table 5.1-4 contains the values for the following example:

\$GPGLL,2503.6319,N,12136.0099,E,053740.000,A,A*52

Table 5.1-4 GLL Data Format

Name	Example	Units	Description
Message ID	\$GPGLL		GLL protocol header
Latitude	2503.6319		ddmm.mmmm
N/S indicator	N		N=north or S=south
Longitude	12136.0099		dddmm.mmmm
E/W indicator	Е		E=east or W=west

UTC Time	053740.000	hh	mmss.sss
Status	A	A=	data valid or V=data not valid=
Mode	A		=autonomous, D=DGPS, E=DR, N=Data not valid, =Coarse Position, S=Simulator
Checksum	*52		
<cr> <lf></lf></cr>		En	nd of message termination

• GSA---GNSS DOP and Active Satellites

Table 5.1-5 contains the values for the following example:

\$GPGSA,A,3,24,07,17,11,28,08,20,04,,,,,2.0,1.1,1.7*35

Table 5.1-5 GSA Data Format

Name	Example	Units	Description
Message ID	\$GPGSA		GSA protocol header
Mode 1	A		See Table 5.1-6
Mode 2	3		See Table 5.1-7
ID of satellite used	24		Sv on Channel 1
ID of satellite used	07		Sv on Channel 2
ID of satellite used			Sv on Channel 12
PDOP	2.0		Position Dilution of Precision
HDOP	1.1		Horizontal Dilution of Precision
VDOP	1.7		Vertical Dilution of Precision
Checksum	*35		
<cr> <lf></lf></cr>			End of message termination

Table 5.1-6 Mode 1

Value	Description	
M	Manual- forced to operate in 2D or 3D mode	
A	Automatic-allowed to automatically switch 2D/3D	

Table 5.1-7 Mode 2

Value	Description
1	Fix not available
2	2D
3	3D

• GSV---GNSS Satellites in View

Table 5.1-8 contains the values for the following example:

\$GPGSV,3,1,12,28,81,285,42,24,67,302,46,31,54,354,,20,51,077,46*73

\$GPGSV,3,2,12,17,41,328,45,07,32,315,45,04,31,250,40,11,25,046,41*75

\$GPGSV,3,3,12,08,22,214,38,27,08,190,16,19,05,092,33,23,04,127,*7B

Table 5.1-8 GSV Data Format

Name	Example	Units	Description
Message ID	\$GPGSV		GSV protocol header
Total number of messages ¹	3		Range 1 to 3
Message number ¹	1		Range 1 to 3
Satellites in view	12		
Satellite ID	28		Channel 1 (Range 01 to 196)
Elevation	81	degrees	Channel 1 (Range 00 to 90)
Azimuth	285	degrees	Channel 1 (Range 000 to 359)
SNR (C/No)	42	dB-Hz	Channel 1 (Range 00 to 99, null when not tracking)
Satellite ID	20		Channel 4 (Range 01 to 196)
Elevation	51	degrees	Channel 4 (Range 00 to 90)
Azimuth	077	degrees	Channel 4 (Range 000 to 359)
SNR (C/No)	46	dB-Hz	Channel 4 (Range 00 to 99, null when not tracking)
Checksum	*73		
<cr> <lf></lf></cr>			End of message termination

^{1.} Depending on the number of satellites tracked multiple messages of GSV data may be required.

• RMC---Recommended Minimum Specific GNSS Data

Table 5.1-9 contains the values for the following example:

\$GPRMC,053740.000,A,2503.6319,N,12136.0099,E,2.69,79.65,100106,,,A*53

Table 5.1-9 RMC Data Format

Name	Example	Units	Description
Message ID	\$GPRMC		RMC protocol header
UTC Time	053740.000		hhmmss.sss
Status	A		A=data valid or V=data not valid
Latitude	2503.6319		ddmm.mmmm
N/S Indicator	N		N=north or S=south
Longitude	12136.0099		dddmm.mmmm
E/W Indicator	Е		E=east or W=west
Speed over ground	2.69	knots	True
Course over ground	79.65	degrees	
Date	100106		ddmmyy
Magnetic variation		degrees	
Variation sense			E=east or W=west (Not shown)

Mode	A	A=autonomous, D=DGPS, E=DR, N=Data not valid, R=Coarse Position, S=Simulator
Checksum	*53	
<cr> <lf></lf></cr>		End of message termination

• VTG---Course Over Ground and Ground Speed

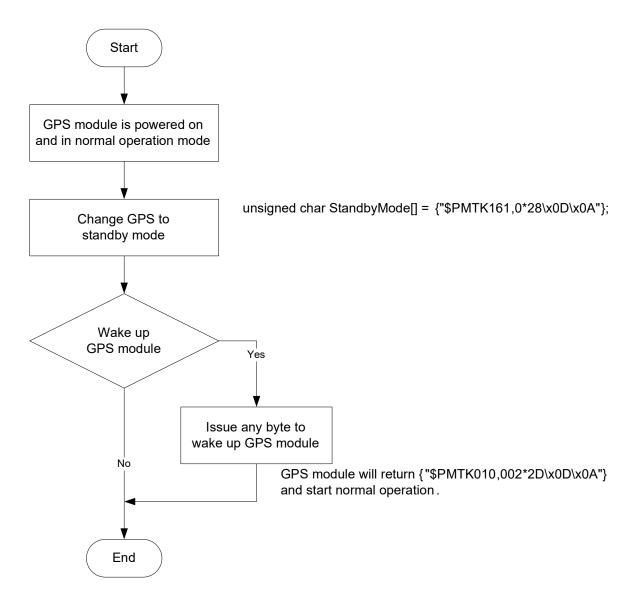
Table 5.1-10 contains the values for the following example:

\$GPVTG,79.65,T,,M,2.69,N,5.0,K,A*38

Table 5.1-10 VTG Data Format

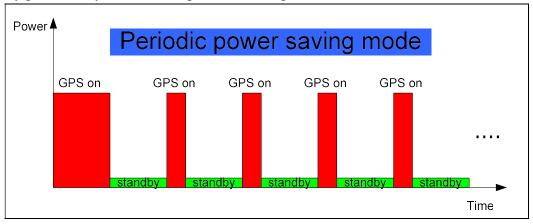
Name	Example	Units	Description
Message ID	\$GPVTG		VTG protocol header
Course over ground	79.65	degrees	Measured heading
Reference	T		True
Course over ground		degrees	Measured heading
Reference	M		Magnetic
Speed over ground	2.69	knots	Measured speed
Units	N		Knots
Speed over ground	5.0	km/hr	Measured speed
Units	K		Kilometer per hour
Mode	A		A=autonomous, D=DGPS, E=DR, N=Data not valid, R=Coarse Position, S=Simulator
Checksum	*38		To Course I Stition, S. Stitionard
<cr> <lf></lf></cr>			End of message termination

5.2 Proprietary NMEA input/output message

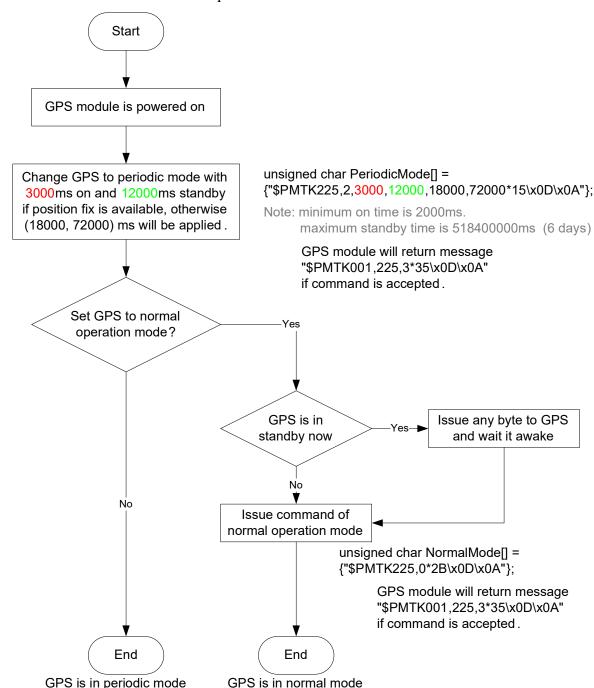

Please refer to MTK proprietary message.

5.3 Examples to configure the power mode of GPS module

The GPS module supports different power modes that user can configure by issuing software commands.

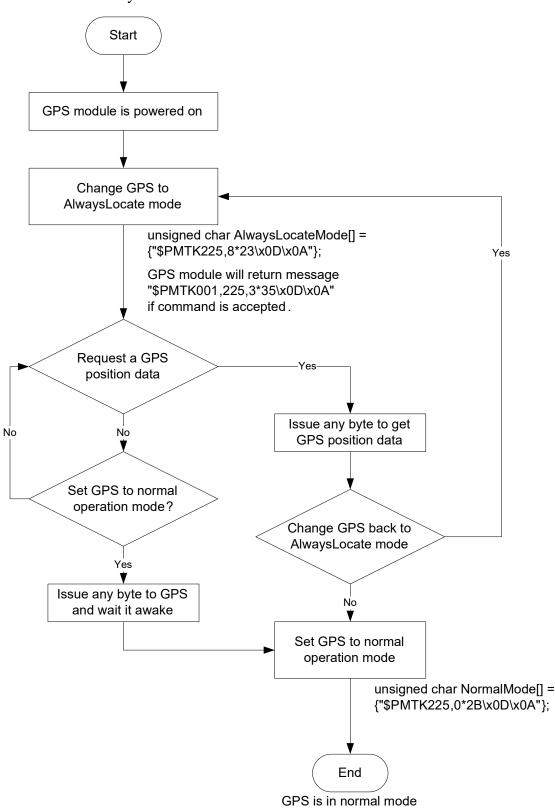

5.3.1 Standby mode

User can issue software command to make GPS module go into standby mode that consumes less than 200uA current. GPS module will be awaked when receiving any byte. The following flow chart is an example to make GPS module go into standby mode and then wake up.



5.3.2 Periodic mode

When GPS module is commanded to periodic mode, it will be in operation and standby periodically. Its status of power consumption is as below chart.


The following flow chart is an example to make GPS module go into periodic mode

and then back to normal operation mode.

5.3.3 AlwaysLocateTM mode

AlwaysLocateTM is an intelligent controller of periodic mode. Depending on the environment and motion conditions, GPS module can adaptively adjust working/standby time to achieve balance of positioning accuracy and power consumption. In this mode, the host CPU does not need to control GPS module until the host CPU needs the GPS position data. The following flow chart is an example to make GPS module go into AlwaysLocateTm mode and then back to normal operation mode.

Note: AlwaysLocateTM is a trade mark of MTK.

5.4 Data logger

The GPS module has internal flash memory for logging GPS data. The configurations

include time interval, distance, speed, logging mode, and ... etc. For more information, please contact us.

6 Pin assignment and descriptions

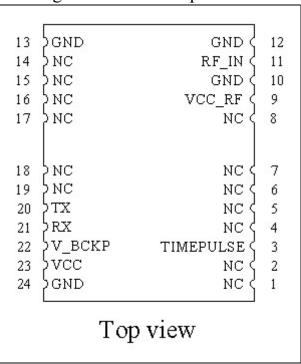


Table 6-1 Pin descriptions

Pin#	Name	1	Description	Note
1	NC		Not connected	
2	NC		Not connected	
3	TIMEPULSE	О	Time pulse (1PPS, default 100 ms pulse/sec when 3D fix is available)	
4	NC		Not connected	
5	NC		Not connected	
6	NC		Not connected	
7	NC		Not connected	
8	NC		Not connected	
9	VCC_RF	О	Output voltage for active antenna	1
10	GND	P	Ground	
11	RF_IN	I	GPS RF signal input	
12	GND	P	Ground	
13	GND	P	Ground	
14	NC		Not connected	

15	NC		Not connected	
16	NC		Not connected	
17	NC		Not connected	
18	NC		Not connected	
19	NC		Not connected	
20	TX	О	Serial output (Default NMEA)	
21	RX	I	Serial input (Default NMEA)	
22	V BCKP	P	Backup battery supply voltage	2
22	22 V_BCRF	Г	This pin must be powered to enable the module.	2
23	VCC	P	DC supply voltage	
24	GND	P	Ground	

<Note>

- 1. VCC_RF does not have short circuit protection.
- 2. In order to get the advantage of hybrid ephemeris prediction, this pin must be always powered during the period of effective ephemeris prediction.

7 DC & Temperature characteristics

7.1 Absolute maximum ratings

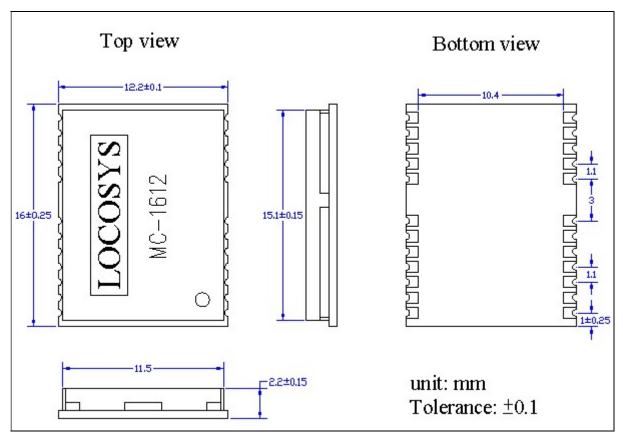
Parameter	Symbol	Ratings	Units
Input Voltage	VCC	4.3	V
Input Backup Battery Voltage	V_BCKP	4.3	V
Operating Temperature Range	Topr	-40 ∼ 85	°C
Storage Temperature Range	Tstg	-40 ~ 85	°C

7.2 DC Electrical characteristics

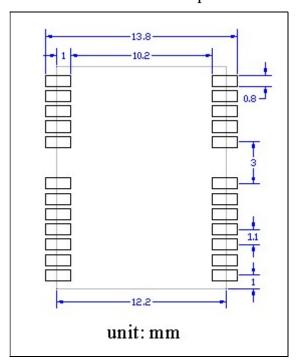
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Input Voltage	VCC		3.0	3.3	4.3	V
Input Backup Battery Voltage	V_BCKP		2.0		4.3	V
VCC_RF Output Voltage	VCC_RF			VCC		V
		VCC = 3.3V,				
		w/o active antenna,				
Supply Current	T	Peak			87 ⁽¹⁾	mA
Supply Current	Iss	Acquisition		26		mA
		Tracking		18 ⁽²⁾		mA
		Standby		170		uA
Backup Battery Current	Ibat	VCC = 0V		6		uA
High Level Input Voltage	$V_{ m IH}$		2.0		3.6	V
Low Level Input Voltage	$V_{\rm IL}$		-0.3		0.8	V
High Level Input Current	Іін	no pull-up or down	-1		1	uA
Low Level Input Current	IIL	no pull-up or down	-1		1	uA
High Level Output Voltage	V_{OH}		2.4			V
Low Level Output Voltage	V_{OL}				0.4	V
High Level Output Current	Іон			2		mA
Low Level Output Current	Iol			2		mA

Note 1. This happens when downloading AGPS data to MC-1612.

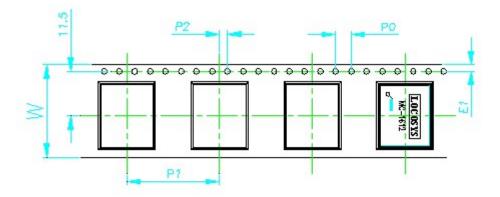
Note 2. Measured when position fix (1Hz) is available, input voltage is 3.3V and the function of self-generated ephemeris prediction is inactive.

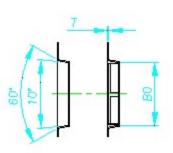

7.3 Temperature characteristics

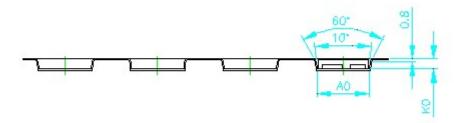
Parameter	Symbol	Min.	Тур.	Max.	Units
Operating Temperature	Topr	-40	-	85	°C
Storage Temperature	Tstg	-40	25	85	°C



8 Mechanical specification


8.1 Outline dimensions




8.2 Recommended land pattern dimensions

9 Reel Packing information

AO 13.50 ±0.1
BO 16.40 ±0.1
DO \$1.5
E1 1.75 ±0.1
KO 2.70 ±0.1
PO 4.0 ±0.1
P1 24.00 ±0.1
P2 2.0 ±0.10
T 0.3 ±0.10
W 24.0 ±0.30

- 1. 10 sprocket hole pitch cumulative tolerance ± 0.2
- 2. Camber not to exceed 1mm in 100mm
- 3. AO and BO measured on a plane 0.3mm above the bottom of the pocket
- 4. KO measured from a plane on the inside bottom of the pocket to the top surface of the carrier .
- 5. packet position relative to sprocket hale measured as true position of packet, not packet hale.
- 6. Component load per 13"reel: 1000 pcs
- 7. Packimg length per 22"reel: 75 M

Document change list

Revision 1.0

• First release on Sep. 23, 2010.

Revision 1.0 to revision 1.1 (November 2, 2011)

- Changed GPS chip from MT3329 to MT3339 on page 4. The units with a capital T after the date code on the metal shield has been changed to new chip.
- Added the description of hybrid ephemeris prediction in section 1.
- Added several new features in section 2.
- Changed Fig 3-1, Fig 3-2 and Fig 3-3
- Added Fig 3-4
- Changed tracking sensitivity from -164dBm to -162dBm on page 5.
- Changed cold start sensitivity from -147dBm to -143.5dBm on page 5.
- Changed hot start time from < 2s to < 1s on page 5.
- Changed cold start time from 35s to 32s on page 5.
- Changed Max. Altitude from 18,000m to 50,000m on page 5.
- Added section 5.3 and 5.4
- Changed the definition of pin $5\sim7$ to NC in the Table 6-1.
- Changed the maximum input voltage of VCC from 3.6V to 4.3V in the section 7.2.
- Changed the peak supply current from 160mA to 87mA in the section 7.2.
- Changed the acquisition current from 47mA to 26mA in the section 7.2.
- Changed the tracking current from 41mA to 18mA in the section 7.2.
- Added standby current, 170uA in the section 7.2.
- Changed the minimum operation temperature from -30°C to -40°C in the section 7.3

Revision 1.1 to revision 1.2 (November 09, 2017)

- Changed the range of satellite ID in GSV message from 32 to 196 on page 8.
- Added "N = data not valid, R=Coarse Position, S=Simulator" in GLL, RMC and VTG message.
- Added velocity accuracy

Revision 1.2 to revision 1.3 (November 18, 2021)

• Revised autonomous position accuracy in section 4.