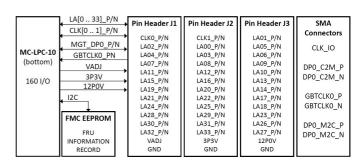


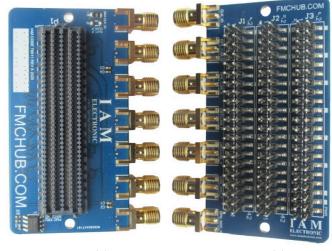
FMC LPC Pin Header

DS#T0011 REV 2022/18/01 PDF version (coming soon), <u>HTML version</u>

Pin Header Board for Low-Pin Count FMC Connectors


Features

- Low-pin count (LPC) connector
- Handy breakout for FMC carriers
- Pin headers with 2.54 mm pitch
- SMA connectors for high-speed data (multi gigabit transceivers)
- SMA connector for dedicated clock IO
- EEPROM for FRU information storage
- Small form factor
- Open-source hardware


Applications

- Easy prototyping
- Logic Analyzer
- Clock Synthesizer
- Trigger-Generator
- Pattern-Generator
- Board-to-Board interconnections
- Debugging and test of digital designs
- Research and education with FPGAs

Block diagram

The photos below show the bottom side with LPC mezzanine card connector (MC-LPC-10) and top side with pin headers (2.54 grid) and SMA connectors.

Bottom side

Top side

1. Description

The **FMC** pin header board was developed to make the high density FMC connector of many FPGA boards easily accessible. In many applications easily pluggable connections are required to process and check the digital signals. The use of 2.54 mm pin headers is very common. Thus, the FMC pin header board enables a variety of applications for digital signal processing and testing. The total number of 68 user signals (LAxx_P/N), 4 user clocks (CLKx_M2C_P/N) and 3 voltage rails (VADJ, 3P3V and 12PV0) from the carrier card connector are routed to the 2.54 mm pin grid on top of the adapter board. In addition, the high-speed data lanes (multi-gigabit transceivers) are easily accessible via SMA connectors on the edge of the PCB. Finally, the board allows complete interconnection of all signals from the FMC connector.

2. Application information

Fig. 1 shows a typical application of the FMC pin header adapter where two carrier boards are connected together. Loose cables can be used for digital signals in the range of several 10 MHz.

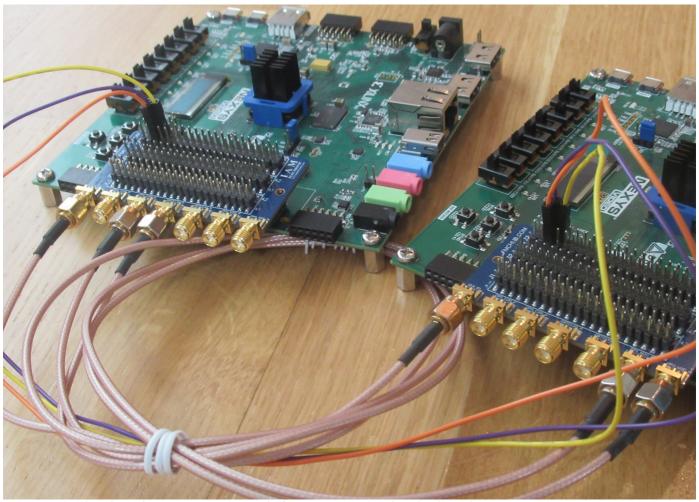


Fig. 1: Board-to-board interconnection with the FMC LPC pin header board.

For high-speed data connections between two boards, the SMA connectors should be used. Data rates of several gigabits per second are common and depend on the FPGA of the carrier board. Fig. 2 below shows the test setup for measuring the maximum datarates of the Pin-Header Board with a loopback configuration. The SMA cables are about 50 cm long.

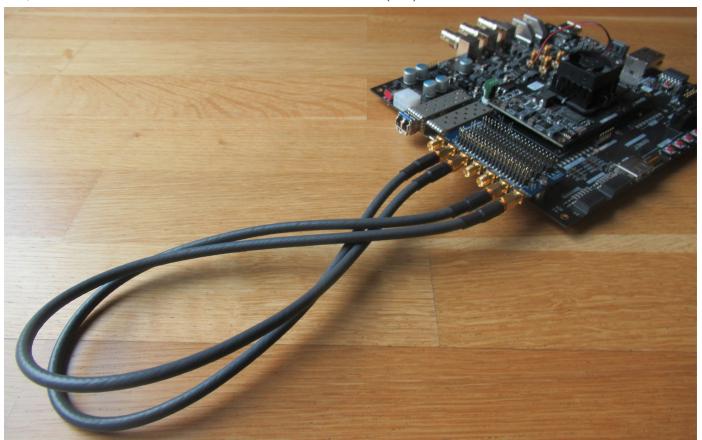


Fig. 2: Loopback connection with the FMC LPC pin header board.

The SMA connectors of the Pin Header Board have been tested with datarates up to 8.5 Gbps without errors. Even faster connections are possible, but then the cable quality and length are more important than the characteristics of the board itself. Fig. 3 and fig. 4 show the results of an eyescan with an Xilinx Zynq Ultrascale+ FPGA.

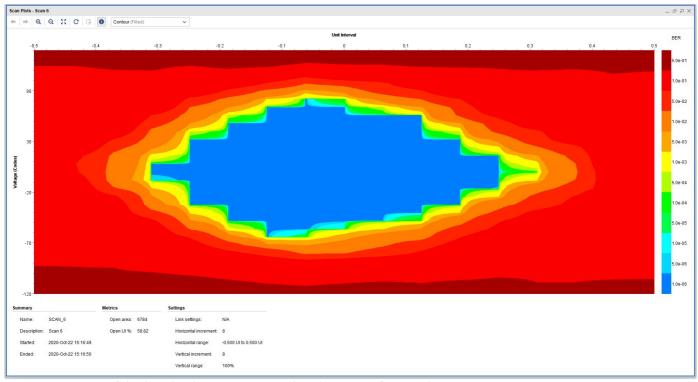


Fig. 3: Eyescan of the loopback connection with a datarate of 5.94 Gbps.

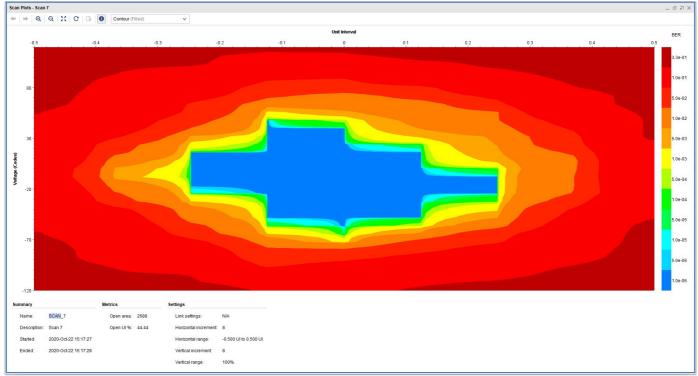


Fig. 4: Eyescan of the loopback connection with a datarate of 8.5 Gbps.

3. Electrical data (pin description)

The printed circuit board is open-source hardware! You can download the <u>FMC LPC pinheader board schematics</u> and <u>PCB layout files</u> in their latest revision from http://www.fmchub.com.

3.1 Pinout of the 2.54 mm pin headers

Fig. 5 and tab. 1 show the connections of the FMC signals on the pin header connectors J1, J2, and J3.

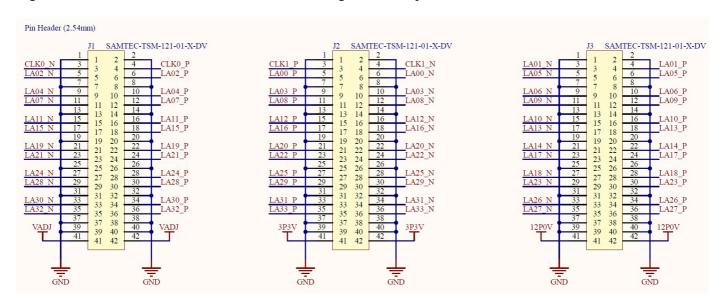


Fig. 5: Pin assignments of the FMC LPC pins to the pin headers J1, J2, and J3.

Tab. 1: Pin assignments of all FMC connector pins to the Pin Header Board.

			riii	
FMC pin name	FMC pin designator	Pin Header	number	
LA00 P CC	G6	J2	5	

D:..

18/4/24, 9:56		FPGA Mezzanine Card (FMC) LPC to Pin header Bo	pard
LA00_N_CC	G7	J2	6
LA01_N_CC	D9	J3	3
LA01_P_CC	D8	J3	4
LA02_N	H8	J1	5
LA02_P	H7	J1	6
LA03_P	G9	J2	9
LA03_N	G10	J2	10
LA04_N	H11	J1	9
LA04_P	H10	J1	10
LA05_N	D12	Ј3	5
LA05_P	D11	Ј3	6
LA06_N	C11	Ј3	9
LA06_P	C10	Ј3	10
LA07_N	H14	Ј1	11
LA07_P	H13	Ј1	12
LA08_P	G12	J2	11
LA08_N	G13	J2	12
LA09_N	D15	J3	11
LA09_P	D14	J3	12
LA10_N	C15	J3	15
LA10_P	C14	J3	16
LA11_N	H17	J1	15
LA11_P	H16	J1	16
LA12_P	G15	J2	15
LA12_N	G16	J2	16
LA13_N	D18	J3	17
LA13_P	D17	J3	18
LA14_N	C19	J3	21
LA14_P	C18	J3	22 17
LA15_N	H20 H19	J1 J1	18
LA15_P	G18	J2	17
LA16_P LA16_N	G19	J2 J2	18
LA10_N LA17_N_CC	D21	J3	23
LA17_N_CC LA17_P_CC	D21 D20	J3	24
LA17_1_CC LA18_N_CC	C23	J3	27
LA18_N_CC	C22	J3	28
LA19_N	H23	J1	21
LA19_P	H22	J1	22
LA20 P	G21	J2	21
LA20_N	G22	J2	22
LA21_N	H26	J1	23
LA21 P	H25	J1	24
LA22_P	G24	J2	23
LA22_N	G25	J2	24
LA23_N	D24	Ј3	29
LA23_P	D23	J3	30
LA24_N	H29	J1	27
LA24_P	H28	Ј1	28
LA25_P	G27	J2	27
LA25_N	G28	J2	28
LA26_N	D27	Ј3	33
LA26_P	D26	Ј3	34
LA27_N	C27	Ј3	35
LA27_P	C26	Ј3	36

18/4/24, 9:56	FPGA Mezz	anine Card (FMC) LPC to Pin header Board	
LA28 N	H33	J1	29
LA28_P	H31	J1	30
LA29_P	G30	J2	29
LA29_N	G31	J2	30
LA30_N	H35	J1	33
LA30_P	H34	J1	34
LA31_P	G33	J2	33
LA31_N	G34	J2	34
LA32_N	H38	J1	35
LA32_P	H37	J1	36
LA33_P	G36	J2	35
LA33_N	G37	J2	36
CLK0_P	H4	J1	4
CLK0_N	H5	J1	3
CLK1_P	G2	J2	3
CLK1_N	G3	J2	4
DP0_C2M_P	C2	SMA	6
DP0_C2M_N	C3	SMA	5
DP0_M2C_P	C6	SMA	2
DP0_M2C_N	C7	SMA	1
GBTCLK0_M2C_P	D4	SMA	4
GBTCLK0_M2C_N	D5	SMA	3
CLK0_M2C_P/ CLK1_M2C_P	H4 / G2	SMA	7

3.2 SMA Connectors for Gigabit transceivers

The FMC LPC connector has one multi-gigabit transceiver data pair (DP0_M2C_P/N and DP0_M2C_P/N) and a corresponding differential clock input (GBTCLK0_M2C_P/N). These six signals are all routed to the SMA connectors. The circuitry is shown in Fig. 6.

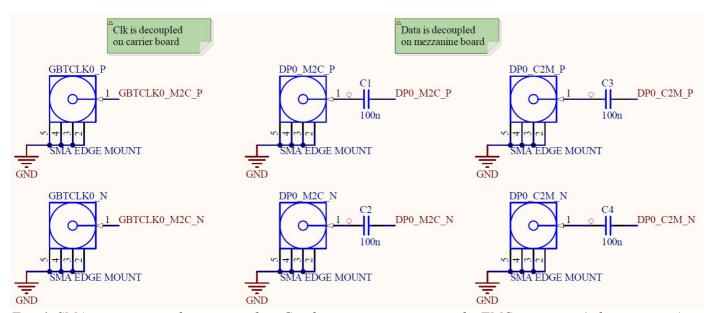


Fig. 6: SMA connectors with corresponding Gigabit transceiver ports on the FMC connector (schematic view).

Fig. 7 shows the signal assignemnts, but the designators of the signals can be also read on the circuit board.

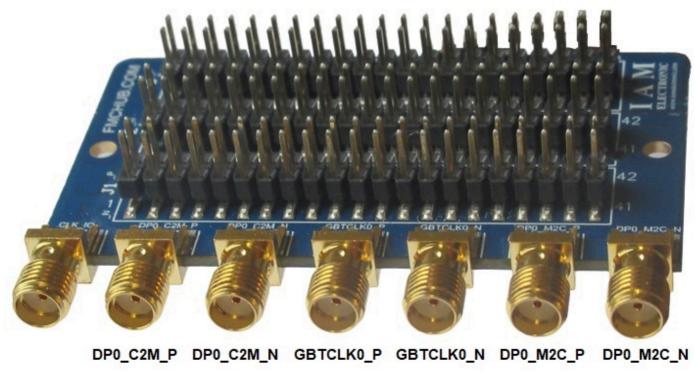


Fig. 7: SMA connectors and their associated Gigabit transceiver signals.

3.3 SMA Connector for clock IO

One of the FMC connector pins CLK0_M2C_P (pin H4) or CLK1_M2C_P (pin G2) can be routed a separate SMA connector on the board edge. A zero ohm resistor determines which clock signal will be used. The clock signals are also routed to the 2.54 mm pin headers J1 and J2. By default, the signal CLK0_M2C_P (CLK0_P) is selected by resistor R1 (see fig. 8 and fig. 9).

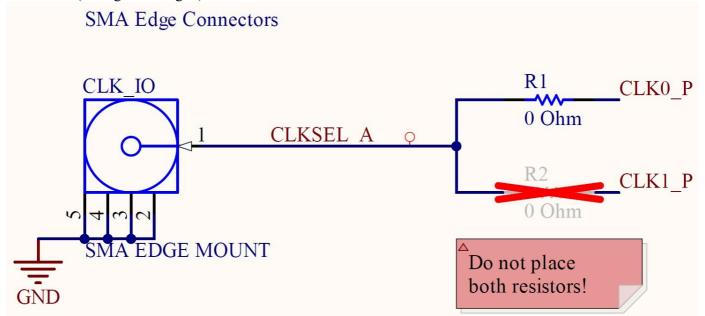


Fig. 8: Clock selection circuit with a zero ohm resistor. The SMA connector can be used as clock input or clock output.

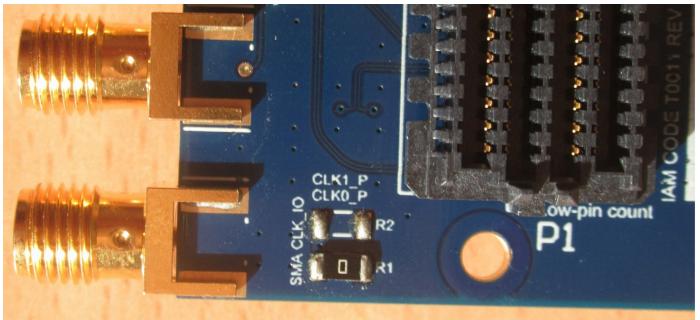


Fig. 9: Resistors R1 and R2 for selecting the clock signal CLK0_M2C_P (Pin H4) or CLK1_M2C_P (Pin G2) of the SMA connector. The size of the resistor is 1206 and can be easily soldered by hand.

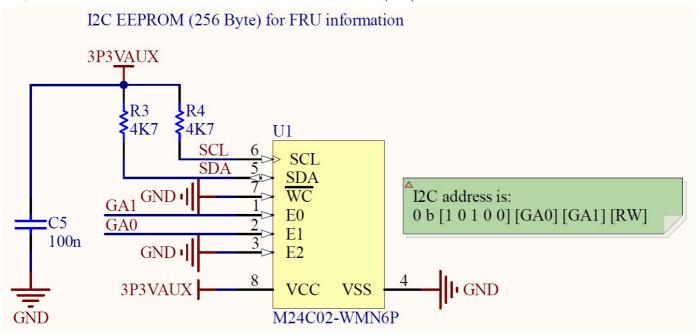

The SMA connector (designator CLK_IO) for the dedicated clock signal is on the left side of the board (front view, see fig. 10).

Fig. 10: The SMA connector for the dedicated clock input/output is on the left side of the board.

3.4 FMC FRU EEPROM

The EEPROM for storing FMC FRU (field replaceable unit) information is an M24C02 with 2 Kbit (256 Byte). The FRU record determines the voltage on the VADJ rail of the FMC connector. By default, the FRU EEPROM is programmed to request 3.3 V from the carrier board. Further, the memory stores the board information such as manufacturer name and product number. The devices can be read and written by the I2C interface of the FMC connector. The Pin Header board includes 4K7 pull-up resistors on the SCL and SDA signal lanes. The I2C address of the M24C02 is defined by the GA0 and GA1 pins of the FMC connector in accordance with the ANSI/VITA57.1 standard.

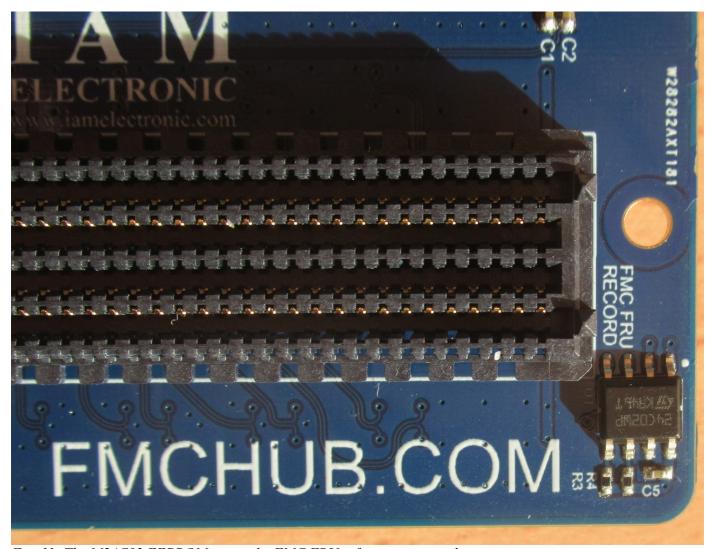


Fig. 11: The M24C02 EEPROM stores the FMC FRU information record.

4. Mechanical data

The board outline is defined by the ANSI/VITA 57.1 standard for single width FMC modules. It has a shortened length of the standard size and fits into any ANSI/VITA 57.1 compliant carrier board. The exact dimensions are given in fig. 12.

All dimensions are in mm.

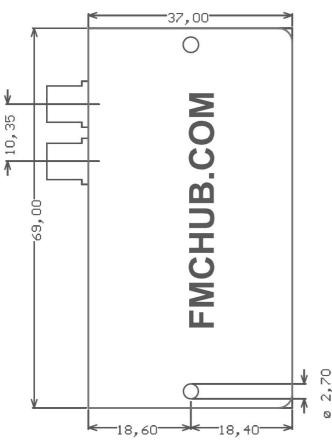


Fig. 12: Mechanical drawing of the FMC LPC Pin Header Board.

The mounting holes are plated but have no electrical connection. Their sizes and positions are in accordance with ANSI/VITA 57.1 single width FMC modules.

5. Ordering information

The FMC LPC Pin Header Board can be ordered at various online market places, or you can request a quotation by sending an e-mail to <u>info@iamelectronic.com</u>.

Tab. 5: Assembly variants of FMC LPC Pin Header board with product numbers and market places.

Product no.	Description	Market place	Request quote	Standard lead time
T0011	FMC LPC Pin Header Board with 2.54 mm pin headers,	IAM Electronic Shop	o info@iamelectronic.com	Normally in stock,
	SMA connectors on top side, and MC-LPC-10 connector on bottom side.	Ebay #184517514919		otherwise 3 weeks
		<u>Tindie</u> #21724		

6. Ressources

- [1] Schematics: FMC PINHEADER BOARD SCHEMATICS.pdf
- [2] PCB drawings: FMC PINHEADER BOARD PCB LAYERS.pdf
- [3] Mechanical dimensions: FMC PINHEADER BOARD MECHANICAL DIMENSIONS.pdf
- [4] Github repository: https://github.com/FMCHUB/FMC LPC PINHEADER

7. Document history

Document number:

DS#T0011

Version history:

2022/01/18: fixed pin assignments in Tab. 1

2020/11/02: Initial release

8. Imprint

Name and registered office of the company: IAM Electronic GmbH Bucksdorffstr. 43 04159 Leipzig Germany

Contact:

Phone: +49 341 26496031 E-Mail: info@iamelectronic.com

Chief Executive Officer: Dr. Philipp Födisch

Commercial register:

Register court: Amtsgericht Leipzig Register number: HRB 34071

Value Added Tax Identification Number: DE313797981