
Energy Monitor Shield V0.9b
Energy Monitor Shield is an Arduino-compatible expansion card designed for building energy monitoring system with LCD screen and an

interface for connecting the wireless transceiver nRF24L01 +.

Feature

 Connect up to three sensors AC (30-100A).

 Support for LCD Screen Nokia LCD5110

 Turn off the LCD backlight with a jumper

 Two buttons to control (operate one analog pin)

 Interface to connect the transceiver to 2.4G nRF24L01 +

 GROVE-compatible connector: I2C

 Fully compatible with Ethernet Shield (Wiznet 5100 + SD)

Layout and schematics

The left side of EM Shield are three connectors for current sensors, right - connector for LCD-screen.

http://www.seeedstudio.com/wiki/File:EMS_intro.jpg
http://www.seeedstudio.com/wiki/File:Em-top.jpg

Jumper JP1 is used to enable / disable real-backlight LCD-screen.

In the upper right corner - I2C-connector.

On the right are two buttons (labeled S1 and S2).

In the center of the board (just to the right LCD-screen) - connector for nRF24L01 +.

Schematic of the device

Basic functionality

In the basic version (without using Ethernet Shield) may organize monitoring of energy consumption in three different circuits using

current sensors.

Information about the current level of consumption can be displayed on the LCD screen.

Device Management can be organized using two buttons on the Shield.

The obtained data can be transmitted by the transceiver nRF24L01 +.

Expansion Capabilities

Additionally EM Shield can connect any device using i2c Grove-compatible connector (sensors, displays, etc.). EM Shield was designed

to be fully compatible with the Ethernet Shield (Wiznet 5100 + SD) - so you can use these two Shields together to create even more

advanced device monitoring electricity (logging on SD-card and presenting data on a web page).

Interfaces

 A0, A1, A2 - involved for connecting sensors AC

 A4 (SDA), A5 (SCL) - displayed on the connector "I2C" (the other two pin connector - VCC and GND for sensor supply)

 Interface for connecting RF-module nRF24L01+:

 D11 - MOSI

 D12 - MISO

 D13 - SCK

 D8 - RF_CE

 D7 - RF_CSN

 D2 - RF_IRQ

 Interface for connecting LCD5110:

 D11 - MOSI

 D13 - SCK

 D5 - LCD_D/C

 D6 - LCD_RST

 D3 - LCD_CS

 A3 - Buttons

Libraries

Necessary libraries

To use EM Shield requires the following libraries:

 Working with the transceiver nRF24L01+ - RF24

 Using the display LCD 51110 (supporting SPI) - LCD5110_Graph_SPI

 Work with current sensors - EmonLib

Requires the libraries that are used when working RF24 and LCD-display:

 SPI

Features using libraries

http://wiki.devicter.ru/images/d/d4/Em-Scheme.JPG
https://github.com/maniacbug/RF24/archive/master.zip
https://github.com/stepanovalex/LCD5110_Graph_SPI/archive/master.zip
https://github.com/openenergymonitor/EmonLib/archive/master.zip

Library has used examples of them just to understand how they work.

Initialization RF-module as follows:

...

//RF24 radio(CE,CSN);

RF24 radio(7,8);

...

Initialize LCD-display is as follows:

...

//LCD5110 myGLCD(DC,RST,CS);

LCD5110 myGLCD(5,6,3);

...

Demonstration

#include <SPI.h>

#include <LCD5110_Graph_SPI.h>

#include "EmonLib.h"

#define WINDOW 15

#define DELTA 1500

EnergyMonitor emon1;

double sIrms;

float Pcur;

float Pmax;

float Pmin=100;

LCD5110 myGLCD(5,6,3);

extern unsigned char SmallFont[];

unsigned long measureTime;

boolean flag=false;

double delta=0;

#define DELTAMEASURE 30000

void setup(void)

{

 myGLCD.InitLCD(70);

 myGLCD.setFont(SmallFont);

 myGLCD.update();

 emon1.current(0, 111.1); // Current: input pin, calibration.

 double Irms[WINDOW];

 // Calibrate (find offset)

 double cIrms = 0;

 flag = false;

 while (!flag) {

 myGLCD.print("calibrating", 0, 0);

 myGLCD.update();

 Irms[0] = emon1.calcIrms(1480); // the first value in the measurement obviously "crooked"

 //Serial.println("calculate delta");

 for (int i=0; i<WINDOW; i++) {

 Irms[i] = emon1.calcIrms(1480);

 cIrms = cIrms + Irms[i];

 delay(100);

 }

 delta = cIrms/WINDOW;

 flag = true;

 }

//myGLCD.print(" ready", 0, 0);

 //myGLCD.update();

}

void loop(void)

{

 // write the current value

 sIrms = emon1.calcIrms(1480) - delta; // Calculate Irms only

 sIrms = abs(sIrms);

 Pcur = sIrms*0.220;

 // the received data is printed

 char tbuf[6];

 dtostrf(Pcur,5,5,tbuf);

 myGLCD.print(tbuf, 0, 0);

 dtostrf(analogRead(A3),4,0,tbuf);

 myGLCD.print(tbuf, 30, 15);

 myGLCD.update();

 delay(250);

}

