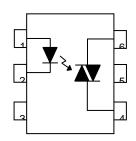


DATASHEET


6 PIN DIP RANDOM-PHASE TRIAC DRIVER PHOTOCOUPLER EL301X, EL302X, EL305X Series

Features:

- Peak breakdown voltage
- 250V: EL301X - 400V: EL302X
- 400V. EL30ZA
- 600V: EL305X
- High isolation voltage between input and output (Viso=5000 V rms)
- Compact dual-in-line package
- Pb free and RoHS compliant.
- UL and cUL approved(No. E214129)
- VDE approved (No.132249)
- SEMKO approved
- NEMKO approved
- DEMKO approved
- FIMKO approved

Schematic

Pin Configuration

- 1. Anode
- 2. Cathode
- 3. No Connection
- 4. Terminal
- Substrate (do not connect)
- 6. Terminal

Description

The EL301X, EL302X and EL305X series of devices each consist of a GaAs infrared emitting diode optically coupled to a monolithic silicon random phase photo Triac.

They are designed for interfacing between electronic controls and power triacs to control resistive and inductive loads for 115 to 240 VAC operations.

Applications

- Solenoid/valve controls
- Lamp ballasts
- Static AC power switch
- Interfacing microprocessors to 115 to 240Vac peripherals
- Incandescent lamp dimmers
- Temperature controls
- Motor controls

Absolute Maximum Ratings (Ta=25℃)

	Parameter		Symbol	Rating	Unit
Input	Forward current		I _F	60	mA
	Reverse voltage		V_{R}	6	V
	Power dissipation		D	100	mW
	Derating factor (above	$T_a = 85^{\circ}C$	P _D -	3.8	mW /°C
Output		EL301X		250	
	Off-state Output Terminal Voltage	EL302X	V_{DRM}	400	V
		EL305X		600	-
	Peak Repetitive Surge (pw=100µs,120pps)	Current	I _{TSM}	1	А
	On-State RMS Current		$I_{T(RMS)}$	100	mA
	Power dissipation		D	300	mW
	Derating factor (above	$T_a = 85^{\circ}C$	P _C -	7.4	mW/°C
Total power dissipation			P _{TOT}	330	mW
Isolation voltage *1			V _{ISO}	5000	Vrms
Operating temperature			T _{OPR}	-55 to 100	$^{\circ}\! \mathbb{C}$
Storage temperature			T _{STG}	-55 to 125	$^{\circ}\!\mathbb{C}$
Soldering	g Temperature* ²		T _{SOL}	260	$^{\circ}\!\mathbb{C}$

Notes:

^{*1} AC for 1 minute, R.H.= $40 \sim 60\%$ R.H. In this test, pins 1, 2&3 are shorted together, and pins 4, 5 & 6 are shorted together.

^{*2} For 10 seconds

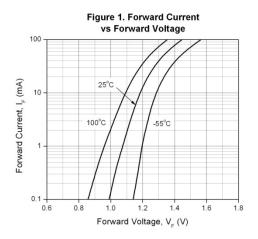
Electro-Optical Characteristics (Ta=25℃ unless specified otherwise)

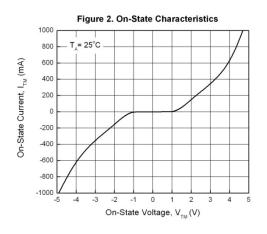
Input

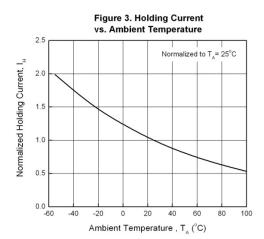
Parameter	Symbol	Min.	Тур.*	Max.	Unit	Condition
Forward Voltage	V_{F}	-	1.18	1.5	V	I _F = 10mA
Reverse Leakage current	I _R	-	-	10	μΑ	$V_R = 6V$

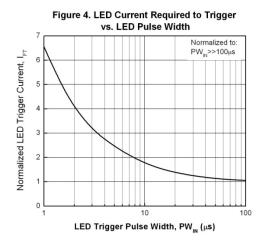
Output

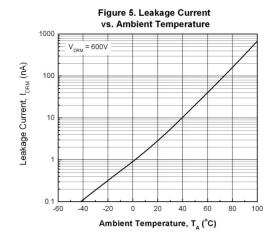
Parameter		Symbol	Min.	Тур.*	Max.	Unit	Condition
Peak Blocking Current		I _{DRM}	-	-	100	nA	$V_{DRM} = Rated V_{DRM}$ $I_F = 0mA$
Peak On-state Voltage		V_{TM}	-	-	2.5	V	I _{TM} =100mA peak, I _F =Rated I _{FT}
Critical Rate of Rise off-state Voltage	EL301X EL302X	_ dv/dt -	-	100	-	V/µs	V_{PEAK} =Rated V_{DRM} , I_{F} =0 (Fig. 8)
	EL305X	3.741	1000	-	-	٠, μ٥	V _{PEAK} =400V, I _F =0 (Fig. 8)

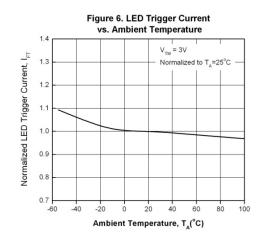

Transfer Characteristics


Parameter		Symbol	Min.	Тур.*	Max.	Unit	Condition
LED Trigger Current	EL3020				30	mA	Main terminal Voltage=3V
	EL3010 EL3021 EL3051	- I _{FT}	-	-	15		
	EL3011 EL3022 EL3052		-	-	10		
	EL3012 EL3023 EL3053		-	-	5		
Holding Current		I _H	-	250	-	μΑ	


^{*} Typical values at T_a = 25°C




Typical Electro-Optical Characteristics Curves



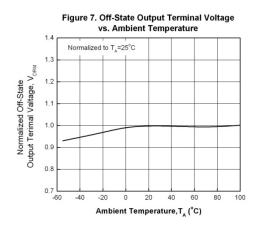
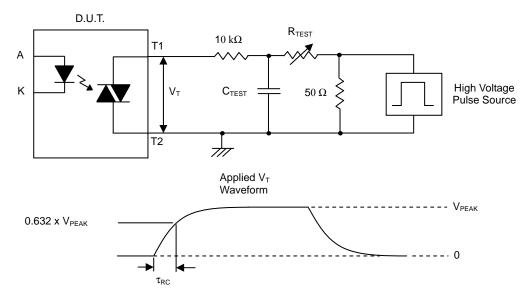



Figure 8. Static dv/dt Test Circuit & Waveform

Measurement Method

The high voltage pulse is set to the required V_{PEAK} value and applied to the D.U.T. output side through the RC circuit above. LED current is not applied. The waveform V_T is monitored using a x100 scope probe. By varying R_{TEST} , the dv/dt (slope) is increased, until the D.U.T. is observed to trigger (waveform collapses). The dv/dt is then decreased until the D.U.T. stops triggering. At this point, τ_{RC} is recorded and the dv/dt calculated.

$$dv/dt = \frac{0.632 \text{ x V}_{PEAK}}{\tau_{RC}}$$

For example, $V_{PEAK} = 400V$ for EL302X series. The dv/dt value is calculated as follows:

$$dv/dt = \frac{0.63 \times 400}{\tau_{RC}} = \frac{252}{\tau_{RC}}$$

Order Information

Part Number

EL301XY(Z)-V or EL302XY(Z)-V or EL305XY(Z)-V

Note

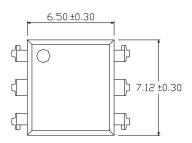
X = Part No. for EL301x (0, 1 or 2).

X = Part No. for EL302x (0,1, 2 or 3)

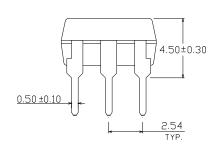
X = Part No. for EL305x (1, 2 or 3)

Y = Lead form option (S, S1, M or none)

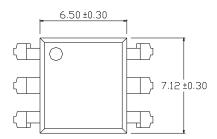
Z = Tape and reel option (TA, TB or none).

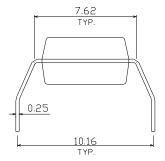

V = VDE safety approved (optional)

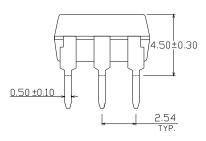
Option	Description	Packing quantity
None	Standard DIP-6	65 units per tube
М	Wide lead bend (0.4 inch spacing)	65 units per tube
S	Surface mount lead form	65 units per tube
S (TA)	Surface mount lead form + TA tape & reel option	1000 units per reel
S (TB)	Surface mount lead form + TB tape & reel option	1000 units per reel
S1 (TA)	Surface mount lead form (low profile) + TA tape & reel option	1000 units per reel
S1 (TB)	Surface mount lead form (low profile) + TB tape & reel option	1000 units per reel



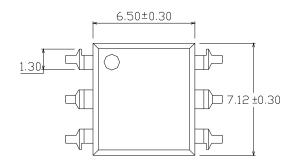
Package Dimension (Dimensions in mm)

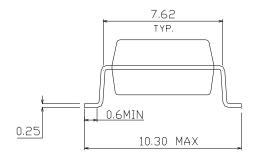

Standard DIP Type

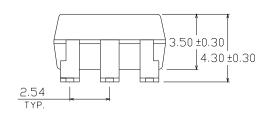


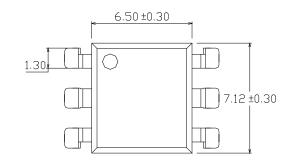


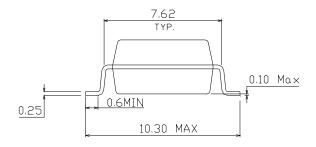
Option M Type

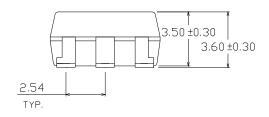




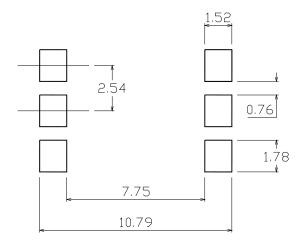


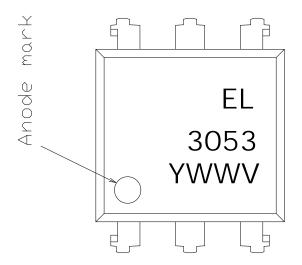

Option S Type





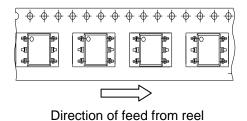
Option S1 Type



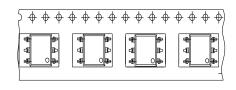


Recommended pad layout for surface mount leadform

Device Marking

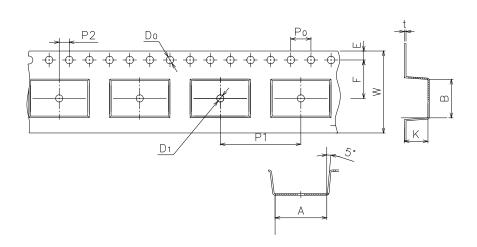

Notes

EL denotes EVERLIGHT
3053 denotes Device Number
Y denotes 1 digit Year code
WW denotes 2 digit Week code
V denotes VDE (optional)



Tape & Reel Packing Specifications

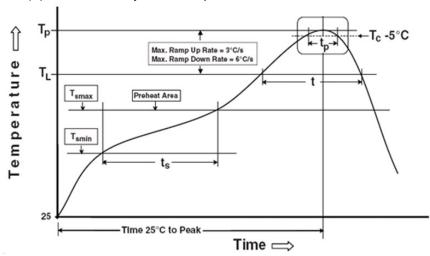
Option TA



Option TB

Direction of feed from reel

Tape dimensions


Dimension No.	Α	В	Do	D1	E	F
Dimension (mm)	10.4±0.1	7.5±0.1	1.5±0.1	1.5+0.1/-0	1.75±0.1	7.5±0.1
Dimension No.	Ро	P1	P2	t	W	К
Dimension (mm)	4.0±0.15	12±0.1	2.0±0.1	0.35±0.03	16.0±0.2	4.5±0.1

Precautions for Use

1. Soldering Condition

1.1 (A) Maximum Body Case Temperature Profile for evaluation of Reflow Profile

Note: Reference: IPC/JEDEC J-STD-020D

Preheat

150 °C Temperature min (T_{smin}) Temperature max (T_{smax}) 200°C Time $(T_{smin} \text{ to } T_{smax}) (t_s)$ 60-120 seconds 3 °C/second max

Average ramp-up rate (T_{smax} to T_p)

Other

Liquidus Temperature (T_L) 217 °C Time above Liquidus Temperature (t L) 60-100 sec Peak Temperature (T_P) 260°C Time within 5 °C of Actual Peak Temperature: T_P - 5°C 30 s

Ramp- Down Rate from Peak Temperature 6°C /second max.

Time 25°C to peak temperature 8 minutes max.

Reflow times 3 times

DATASHEET 6PIN DIP RANDOM-PHASE TRIAC DRIVER PHOTO COUPLER EL301X, EL302X, EL305X Series

DISCLAIMER

- 1. Above specification may be changed without notice. EVERLIGHT will reserve authority on material change for above specification.
- 2. When using this product, please observe the absolute maximum ratings and the instructions for using outlined in these specification sheets. EVERLIGHT assumes no responsibility for any damage resulting from use of the product which does not comply with the absolute maximum ratings and the instructions included in these specification sheets.
- These specification sheets include materials protected under copyright of EVERLIGHT corporation. Please don't reproduce or cause anyone to reproduce them without EVERLIGHT's consent.